Pages

Sunday, 1 October 2017

A random history of energy economics (3) - The life cycle of fuels

Fuels like any other product have life cycles.  The stages of the classic life cycle are growth, maturity and decline.  For some fuels like wood, the length of the cycle is measured in millennia, that of coal looks like it might be centuries and carbide probably decades.

My understanding of acetylene lamps is that they were developed for cars and motorbikes at the very end of the 19th century.  Whilst electric incandescent lamps could be powered by a lead-acid accumulator, they were not bright enough to allow safe driving at speed.  The attraction of acetylene is that it burns at a high temperature and produces a bright light.  The gas was generated by the action of water on calcium carbide, the lamps were so constructed that a reservoir of water dripped on calcium carbide which was then burnt in a lamp with a reflector.  The brightness of the lamp was controlled by adjusting the water flow, as the gas was generated, the carbide turned to slaked lime.  "Carbide" was sold in garages along with petrol and oil during the 1920's, but as automotive electrics improved and effective headlamps which could be controlled by a switch became a standard fitting, carbide lamps were largely displaced by the 1930s.

Kerosene (a.k.a. paraffin) as a domestic fuel had a somewhat longer life cycle, it was used for lighting and cooking in late 19th century.  In the era of solid fuel ranges. it facilitated cooking without first having to light a coal fire, although many found the smell unattractive.  Paraffin heaters were widely used well into 1970s and may people remember the Esso's adaption of "the smoke gets in your eyes" for their TV adverts.  Paraffin heaters were generally displaced by low cost gas central heating in the 1970s.

The same pattern of growth, maturity and decline is apparent in the UK coal consumption.  A spokesman for OPEC once commented that the UK did not run out of coal, they just stopped using it.  In the latter part of the 19th century consumption grew as industry, the railways, gas production and other applications expanded.  It remained constant for approximately half a century until the 1970's.  During this time the economy was growing, but technology was evolving which allowed coal to be used more efficiently.  In 1890, electrical power generation had a thermal efficiency well below 5%, by 1970, this was approaching 40%.  The boilers used in the early power stations operated around 150 psi, by 1945 some were operating at 675 psi, the rising temperatures and pressures resultined in higher operating efficiencies.

In the 1960, natural gas (mostly methane) from the North Started to displace coal as a domestic and industrial fuel.


The displacement of coal by natural gas is apparent in the graph below.  Starting around 1830, many towns acquired as gas works either privately or municipally owned, in the early years the principal use was for lighting, but cooking, heating and industrial use increased.  Between 1900 and 1930, electricity, also generated from coal, displaced gas for lighting.    The availability of North Sea gas bought about the extinction of the coal gas works in less than a decade.


Gas turbine power stations, steadily displace coal fired steam technology, a process which accelerated in the 21st century as concerns over the environmental effects of coal grew.

Relevance for Today

The energy mix is constantly changing, the driving force is technology, over two centuries it has included coal, wind, nuclear (after 50 years is this an old technology) and many evolutions within each one.  There is a lot of evolving technology, offshore wind and electrical storage maybe the key elements.  Several cities are talking about petrol or diesel vehicles and only allowing electrical ones, so more change can be expected.